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Natural Language Processing and LLMs

NYU Shanghai AI Summer Program

Instructor: Chen Zhao
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What is NLP?

• Natural Language Processing: 
• build program to automatically analyse, understand and generate human 

language in text 
• Important branch of Artificial Intelligence 

• NLP is an interdisciplinary field
• Healthcare, Law, Finance, etc
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What is NLP?
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What is NLP?

• Play Diplomacy game with 
Human players! 
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What is NLP?
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NLP History 1

https://medium.com/@antoine.louis/a-brief-history-
of-natural-language-processing-part-1-ffbcb937ebce



99

Rule Based NLP

• Rule based system, require careful programming 
• Limited Domains 
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Statistical NLP
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Statistical NLP

• Use machine learning 
approaches for NLP

• Statistical Machine 
Translation
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NLP History 2

https://medium.com/@antoine.louis/a-brief-history-
of-natural-language-processing-part-1-ffbcb937ebce
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NLP with Deep Leaning

• Significant Progress in NLP

• Lots of Compute resources, large corpora

• Little Feature Engineering 
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NLP with Deep Leaning – Neural Machine Translation
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NLP with LLMs

• Pre-trained on large corpus 
• Fine-tuning / prompting on tasks
• One model for many tasks
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State-of-the-art LLMs
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Language Model Hallucinates 



1818

• Code editor + LLM

LLM in 2025: AI + Coding 
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• Operating system written by Cursor Only!!
• Do we still need software engineer ???

LLM in 2025: AI + Coding 
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Basics: Word Embeddings

• Learned dense vectors from text (i.e. corpora) for representing words
• Input: 

• A pre-defined vocabulary V 
• Dimension of word vectors d (e.g., 300)
• Text corpora (e.g., Wikipedia, Twitter, Common Crawl) 

• Output: 𝑓 ∶ 𝑉 →  ℝ𝑑

• Each word is represented by a dense vector 
• Note: each dimension does not have a specific meaning
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Basics: Neural Network

• A network of small computing units 
• Deep learning: Modern neural network (have many layers) 
• Possible to learn any function 
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Basics: Feedforward Neural Networks

• Sometimes called multi-layer perceptron (MLPs)
• Input units, hidden units, output units 
• Fully-connected: each unit in each layer takes input from all units in 

the previous layer
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Neural Sequence Modeling

• Encoder-decoder Structure 
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Transformers
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Transformers

• Transformer Encoder + Decoder 
• Replacement of Seq2seq
• No recurrent structures! 
• Key: Multi-head; Self-Attention 
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Self-Attention

• From: each state (i.e. input token) 
• To: All other tokens in the sequence 
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Query, Key and Value in Self-Attention

• Query: asking for information 
• Key: saying it has some information 
• Value: giving the information
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Multi-Head Attention 
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Multi-Head Attention 
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Positional Encoding 

• Transformer does not have recurrence 
• Include order of tokens! 
• People just use a learnable embedding 

for every unique position
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Feed-forward Blocks

• Attention: Gather information from other tokens 
• FFN: Process this information

• There is no elementwise nonlinearities in self-
attention; stacking more self-attention just re-
average value vectors



3333

Residual Connections 

• Allow stacking multiple layers
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Layer Norm 

• A trick to help models train faster
• Normalize vector representation in batch
• Idea: cut down on uninformative variation 

in hidden vector values 



3535

Transformers encoder 

• Each encoder layer has two sub-layers:
• A multi-head self-attention layer
• A feedforward layer

• Residual connection 
• Layer normalization
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Transformers decoder 

• Each decoder layer has three sub-layers:
• A masked multi-head self-attention layer
• A multi-head cross-attention layer
• A feedforward layer

• Residual connection 
• Layer normalization
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Training Transformer

• Training data: Parallel Corpus
• Loss: Cross Entropy
• Back-propagate gradients through both encoder and decode
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Summary: Transformer
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Summary: Transformer
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Summary: Transformer
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Transformer Family

• Transformer Encoder: BERT, RoBERTa
• Transformer Decoder: GPT, PaLM
• Transformer Encoder-Decoder: T5 
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Pre-training and Fine-Tuning

• Pre-train on a large dataset for task X
• Fine-tune on a (smaller) dataset for task Y
• Goal: Learn neural representations from X that benefit Y
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GPT

• Transformer decoder only 
• Use Language Modeling as a pre-training objective
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GPT-2
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GPT-3, very large models

• So far, we have interacted with pre-trained models
• Sample from the distributions they define 
• Fine-tune them on a task we care about, and take their predictions

• Very large language models seem to perform learning without 
gradient steps simply from examples you provide within their contexts

• GPT-3 gas 175 billion parameters. Previous largest model had 11 billion 
parameters
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GPT-3/4,  in-context learning

• Very large language models seem to perform learning without 
gradient steps simply from examples you provide within their contexts
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Language modeling != assisting users 

• Language models are not aligned with user intent
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Language modeling != assisting users 

• Language models are not aligned with user intent

We need fine-tuning to rescue!
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Scaling up finetuning

• Fine-tune on many tasks
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Instruction finetuning

• Collect examples of (instruction, output) pairs across many tasks 
and fine-tune a LM 

• Evaluate on unseen tasks
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Instruction finetuning (Flan-T5)
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Instruction finetuning (Flan-T5)
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MMLU: new benchmarks for multitask LMs

• Massive Multitask 
Language 
Understanding (MMLU)

• New benchmarks for 
measuring LM 
performance on 57 
diverse knowledge 
intensive tasks
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MMLU: Examples
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MMLU: Rapid Progress
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Limitations of Instruction finetuning

• It is expensive to collect ground-truth data for tasks
• Some tasks like open-ended creative generation have no right answer

• E.g., write a story about a lion

• Language modelling penalizes all token-level mistakes equally, but 
some are worse than others

• Can we try to satisfy human preferences?
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Optimizing for human preferences

• For each LM sample, imagine we had a way to obtain a human reward 
𝑅 𝑠 ∈ ℝ

• Now let’s maximize the expected reward of samples from LM
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Reinforcement Learning from Human Feedback 
(RLHF)

• Instruction 
tuning first

• Then maximize 
reward
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Reinforcement Learning (RL)

• The field of reinforcement learning 
has studied these problems for 
many years

• Circa 2013: resurgence of interest in 
RL applied to deep learning in 
game playing

• New area: Applying RL to modern 
LMs
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Optimizing for human preferences

• How do we actually change our LM parameters to maximize this?

• Policy gradient methods in RL give us tools for estimating and 
optimizing this objection
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How do we model human preferences?

• Human-in-the-loop is expensive! 
• Instead of directly asking humans for preference, model their 

preferences as a separate NLP problem
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How do we model human preferences?

• Human judgments are noisy and miscalibrated! 
• Instead of directly asking for ratings, ask for pairwise comparisons that 

are more reliable
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How do we model human preferences?

• Human judgments are noisy and miscalibrated! 
• Instead of directly asking for ratings, ask for pairwise comparisons that 

are more reliable
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RLHF provides additional gains
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RLHF Summary

• Have everything:
• A pretrained (and instruction-finetuned) LM
• A reward model 
• A method (policy gradient) for RL

• RLHF:
• Initialized from LM, with parameter 𝜃 to optimize for
• Optimized the following reward with RL
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Instruct GPT: scaling up RLHF to many tasks
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Instruct GPT: scaling up RLHF to many tasks

• Labeler collected tasks
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Instruct GPT: scaling up RLHF to many tasks
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ChatGPT: Instruction tuning + RLHF for dialogue
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ChatGPT: Instruction tuning + RLHF for dialogue
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What is Prompting?

• Definition: Encouraging a pre-trained model to make predictions by 
textual prompt to specify the task to be done
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Basic Prompting

• Append a textual string to the beginning of the sequence and complete
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Standard prompting workflow 

• Fill a prompt template 
• Predict the answer
• Post-process the answer 
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Prompt Templates

• A template where you fill in with an actual input
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Answer Prediction

• Given a prompt, predict the answer
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Post-processing

• Select the actual output based on the answer
• E.g., formatting the output for easy visualization



7878

Post-processing

• Given an answer, map it into a class label or continuous value

• Often map many extracted words onto a single class 
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Few-shot Prompting

• Provide a few examples of the task together with the instruction
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Empirical results on In-context Learning 

• Sometimes only giving the inputs works better
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Empirical results on In-context Learning 

• Sometimes performance can decrease with too many examples
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LMs are sensitive to Small changes 
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Prompt Engineering: Design of Prompts

• Manual
• Configure a manual template based on the characteristics of the task 
• Configure prompts based on intuition about a task 

• Automated search: Find the (hopefully) optimal prompts
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Prompt Engineering: Design of Prompts

• Manual
• Configure a manual template based on the characteristics of the task 
• Configure prompts based on intuition about a task 

• Automated search: Find the (hopefully) optimal prompts
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Prompt Engineering: Format

• Make sure that the format matches that of a trained model
• Could have large effect on models! 
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Prompt Engineering: Instruction

• Instructions should be clear, concise and easy to understand 
• See https://www.promptingguide.ai/introduction/tips

https://www.promptingguide.ai/introduction/tips
https://www.promptingguide.ai/introduction/tips
https://www.promptingguide.ai/introduction/tips
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Chain-of-thought Prompting

• Get the model to explain its reasoning before making an answer 
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GPT-o1: Scale up Reasoning

Our large-scale 
reinforcement algorithm 
teaches the model how to 
think productively using its 
chain of thought in a highly 
data-efficient training 
process.
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Hard Language Tasks:  Reasoning
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Definition of Reasoning

Think, understand, and form judgments by a process of logic

        - Oxford Languages
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Reasoning Problems
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Reasoning Problems
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Reasoning Problems
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Chain-of-thought Prompting
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Chain-of-thought Prompting

• Definition: A chain of thought is a series of intermediate natural 
language reasoning steps that lead to the final output. 

• Benefits:
• Decompose into simple questions
• Interpretable
• Leverage prompting of LLM 
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Chain-of-thought Prompting
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Experiments: Arithmetic Reasoning 
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DeepSeek V3 / R1

• < 200 employees

• Spin off of hedge fund

• Consistent open-weights model releases
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DeepSeek V3 / R1
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DeepSeek V3 / R1
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DeepSeek V3

• Mix-of-Expert architecture

• Performance close to GPT 4o

• Much cheaper training cost



103103

DeepSeek R1

• Primarily a post 
training innovation 

• Think GPT o1
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DeepSeek R1-Zero: RL from scratch 

Reinforcement learning
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DeepSeek R1-Zero: Reward

• Accuracy rewards: whether the response is correct 

• Format rewards: whether it follows format
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DeepSeek R1-Zero is already good 
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DeepSeek R1-Zero: Aha Moment

• Occurs in an intermediate version of model

• RL can generalize! 
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DeepSeek R1: RL with Cold Start

• Can reasoning further improved with a small amount of long CoT data?

• Can we train a user-friendly model?
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DeepSeek R1: RL with Code Start

• R1: Cold-started from human-written data 

• Reasoning + Non-reasoning data: use LLM to provide CoT with basic 
checks 

• Only 800K samples
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DeepSeek R1: RL with Code Start
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